

NASA-ISRO SAR Mission Status

Franz Meyer

NISAR Science Team Member

Paul Rosen

NISAR Project Scientist

Kent Kellogg

NISAR Project Manager

October 2019

NISAR Mission Overview

Mission Science

Biomass disturbance, Effects of changing climate on habitats and CO₂,

Ice velocity, thickness Response of ice sheets to climate change & sea level rise

Surface Deformation Geo-Hazards Water Resource Management

- Directed mission under NASA's Earth Science Division
- Cat 2 project (NPR 7120.5E) & payload risk class C (NPR 8705.4)
- International partner: Indian Space Research Organization (ISRO)
- Launch no earlier than January 30, 2022 for left-look only mission
- Dual frequency L- and S-band Synthetic Aperture Radar (SAR)
- Baseline orbit: 747km altitude circular, 98 degrees inclination, sun-synchronous, dawn-dusk (6 AM – 6 PM), 12-day repeat
- Repeat orbit within +/- 250m
- Spacecraft: ISRO I3K
- Launch vehicle: ISRO Geosynchronous Satellite Launch Vehicle (GSLV) Mark-II (4-m fairing)
- 3 years NASA science operations (5 years consumables)
- 5 years ISRO S-band SAR and spacecraft operations
- All science data (L- and S-band) will be made available free and open, consistent with NASA Earth Science open data policy.

NASA-ISRO Observatory Work Share

On-Orbit Configuration

Spacecraft Bus System (ISRO URSC)

I3K heritage bus with modifications

- Radar Payload System
 - L-band SAR aka DSI (NASA)

DSI = Dual-band SAR Instrument

- S-band SAR (ISRO SAC)
- Engineering Payload System (NASA)
 - Payload Communication Subsystem (PCS)
 - Ka-band high rate transmitter
 - GPS Payload (GPSP)
 - Solid State Recorder (SSR)
 - Payload Data Subsystem (PDS)
 - Power Distribution Unit (PDU)
 - Pyro Firing Assembly (PFA)
- Launch Vehicle (ISRO VSSC)
 - Geosynchronous Satellite Launch Vehicle (GSLV) Mark-II (4-meter fairing)

URSC: U. R. Rao Satellite Centre

SAC: Space Applications

Centre

VSSC: Vikram Sarabhai

Space Centre

Mission Animation

Mission System Architecture

Unique Science & Technology

- Simultaneous wide-swath, fine resolution, multipolarization radar allowing complete global coverage of land & ice-covered surfaces
- Dual frequency (L/S- band) free-flying radar
- High rate Ka-band mission data return (35 Tb/day)
- First time use of commercial cloud-based ground processing and distribution systems
- Received funding augmentation for add'l data return to support other agencies' needs
- First-of-a-kind radar technologies
 - First digital beam forming radar in space
 - First Phased-Array Feed Reflector system in space
 - Largest known SAR aperture in history (~100 sq m)

NASA/JPL & Caltech Advanced Rapid Imaging and Analysis (ARIA) co-seismic Interferometric Synthetic Aperture Radar (InSAR) surface displacement map from recent earthquakes (JAXA ALOS-2 data from April 8 and July 8, 2019). With NISAR, these will be produced weekly around the globe for earthquakes, floods, eruptions...

First flight Ka-band Modulator in initial power on and functional testing

NISAR System I&T Is Underway

Pre-SIT

Subsystem I&T

3/1/17 - 3/1/19

- L4 and L5 S/S verification
- Box-level environmental
- EM Testbed activities
- RIS assembly
- Various locations

SIT-1

L-SAR I&T

3/7/19 - 1/8/20

- L-SAR integration to RIS
- L-SAR functional testing
- L-SAR
 Performance
 TVAC test (no
 FRAP)
- Building 306 HB

SIT-2

Dual SAR I&T

1/9/20 - 7/22/20

- S-SAR/clamshell integration
- L-SAR and S-SAR compatibility testing, radiating tests
- Bldg 306 HB, Antenna Range

DTM: Mech I&T

7/1/19 - 4/1/20

- RAR, RAB, RAS integration to RIS
- Deployment testing
- Environmental testing
- Building 306 HB, Bldg 144 and 150

SIT-3

Payload Sys I&T

7/23/20 - 2/8/21

- EP and hosted HW integration
- EMI/EMC test
- RAB and RAR integration
- Stow, deploy, first motion
- Mass Properties
- Acoustic and vibe
- Non-radiating thermal balance TVAC
- Bldg 306 HB,
 Bldg 144 and 150

SIT-4 / AIT

Observatory I&T

3/18/21 - 10/27/21

- RP and S/C mech integration
- RP/SC electrical integration and spacecraft power test
- Observatory EMI/EMC, Dynamics and TVAC

L-SAR Integration Progressing Well – System-Level Testing (V-pol) Has Started

Digital Signal Processors
Power Converter Unit

Second Stage Processor

Quad-First Stage Processors

Interior View of Radar Instrument Structure

"Hey! It's (almost) a radar!"

Dynamic Test Model (DTM) Integration Has Started

The DTM Program Protoflight Tests the Structural Elements - including the Reflector and Boom - and occurs in parallel with L-SAR and S-SAR I&T

Reflector Truss Assembly has Begun!

ISRO S-SAR Integration is Beginning

RIS/Clamshell unpacking and handover to ISRO-SACfor S-SAR I&T (June)

ISRO/SAC moved
Clamshell onto turnover
fixture and began
installing 'dummy'
electronics boxes to
facilitate S-SAR harness
installation. Electronics
installation is planned to
start this month

Engineering Payload Elements Progress

Science/Mission System Status

- L1 and L2 science product algorithms are maturing well
- Cloud-based Science Data System has been tested end-to-end with Sentinel-1 archive at ASF
 - Preparing to produce sample data products for science team evaluation from UAVSAR and Sentinel-1
- NASA Near Earth Network developments are on track
- Initial release of Ground Data System has been deployed to I&T activities
- JPL Flight operations team is staffed up and working NEN AS4 Antenna commissioning and other post-launch plans for CDR at ViaSat Facility
- Mission design and interface documentation is mature for Mission System CDR, passed September 2019

Image amplitude (left) and InSAR Phase (right) generated from NISAR sample SLC products.

Current Planned Coverage

N.America is covered ascending and descending (drk-yellow) Plan 337: L-SAR QQP 40+5

- Non-EU urban areas are observed (It-yellow) at L-SAR 40+5 DP
- Current plans have significant work done in Antarctica to collect an ISRO S-SAR mosaic every cycle and to lower L-SAR Data Volume using lower-rate full-swath modes as compared to previous plans (e.g. 325)
- Plan to update plan every 6 months

Descending composite

Culling Strategy

- Near the equator, we get complete coverage of the earth each cycle by observing every opportunity
- Near the poles, NISARs ground tracks and swaths converge requiring only ½, or a third, or fewer observations per opportunity for full coverage per cycle
- Overlap of adjacent swaths at culling latitudes has been increased from prior iterations of Reference Observation Plan

NISAR Top Challenges

- Schedule
 - S-SAR delivery from ISRO/SAC appears very likely to be delayed
 - Unknown impact on launch date.
- NISAR may be the most highly integrated joint internationally operated mission NASA has yet implemented;
 - Details of joint operations being worked out

NISAR Mission Capabilities Preserved Through Development

- With all electronics subsystems built and currently in integration, the system is on track for fully planned functionality
- Since initial requirements reviews, capabilities of the system have been stable
 - Science and Imaging performance requirements are mostly unchanged
 - Waveforms have been degraded in average power slightly to meet FAA low interference thresholds
 - Hardware as tested meets subsystem requirements
- Thanks to DLR research into SweepSAR performance, it is clear that quad-pol *cannot* satisfy complete global performance requirements every 12-day cycle.
 - Gaps in swath due to sweepSAR are large for quad-pol
 - Dithering at high quad-pol PRFs leads to unacceptably high ambiguities
 - Quad-pol observations over India are baselined, but every other cycle imaging is sufficient
 - Rest of the world are primarily Dual-pol observations